Saturday, October 8, 2016

Fixed Point Moving Gemiddelde Filter

Im implementering van 'n 80-72-64-48 multi pas bewegende gemiddelde filter vir 'n ingeboude stelsel in C en in vaste punt. Die implementering is 'n omsendbrief buffer waar im hou 'n lopende som en die berekening van yn yn-1 xn - xn-M waar M is die lengte van 'n filter. Dit word gedoen vir elke subfilter met die uitset van een wat dien as die insette vir 'n ander. Im skalering my koëffisiënte deur 2 wat my koëffisiënte van lengte 2 of 2, afhangende van die lengte filter gee. Toe die gevolg is weer afgeskaal deur 2 om die korrekte uitset te kry. Nou, alles lyk goed op kort tydskale maar oor lang tye Ek kry 'n drif. Die rede vir die rekursiewe implementering is om berekeninge te spaar op 'n ingeboude verwerker. Ek het die beeld van 'n paar van die internals van my filter ingesluit, dit is wanneer 'n stap reaksie toegepas en kan ons die oordrag funksies van die filters vorm aanneem, 'n vierkant, driehoek, dan benader 'n Gaussiese so die filter werk soos verwag sien. Is daar enige manier om dit op te los, en waar is die mees waarskynlike bron van hierdie. is hierdie drif te danke aan 'n bietjie verdwaal in die verskuiwing of iets anders. Die drif is nie teenwoordig vir DC insette, maar vir AC seine dit dryf stadig. Oplossing: Die probleem was in die akkumulator as Robert in die kommentaar voorgestel. Die probleem was dat een element van die berekening deur 'n ekstra op en af ​​skuif gegaan in vergelyking met die res, wat het 'n ronde geneutraliseer dat opgehoopte. gevra 27 April toe 15 21:12 is jou akkumulator yn word afgerond of gekwantiseerde op enige wyse moet jy seker maak dat die xn-M wat afgetrek is presies dieselfde waarde as xn dat M monsters gelede bygevoeg. sodat jy regtig wil 'n bewegende som te doen. eerder as 'n bewegende gemiddelde en skaal die opbrengs van jou bewegende som (met 1 / M) te kry wat jy die gemiddelde. dit is nogal 'uitvoerbaar en selfs beter gedoen in vaste punt eerder as swaai-punt. â € Robert Bristow-Johnson 27 April 15 by 22:52 quotScaling die coefficientsquot Ek neem aan dat julle 'n skeiding deur M na elke stadium en dit is die koëffisiënt wat jy skaal wat is waarskynlik die oorsaak van die verreken. Beter dan om te verdeel deur prod Mi aan die einde van alle filters. Jy moet hou van die interne amplitudes al hou as jy uiteindelik die opgaarbatterye oorloop. Dit is egter maklik opgelos word deur modulo rekenkundige (waarvan two39s aanvulling is 'n spesiale geval). uitvoering maak Oscar 28 April 15 by 07:00 Oscar, dit is 'n vaste punt filter. Wat beteken dat ek net heelgetal rekenkunde. Vir 'n bewegende gemiddelde lengte GT 1 met gewin 1 sal die filter konstantes n fraksie wat nie representeerbaar in heelgetalle wees. So het die koëffisiënte is afgeskaal hulle heelgetalle te maak deur links verskuif hulle x baie stukkies. As gevolg van hierdie die finale uitset moet sowel verskuif na regs deur soveel bits. I kan 'n lopende som deur al 4 filters nie hou sonder die herstel van die uitset van die twee, die insetsein is 16 stukkies en met die koëffisiënt skalering en lengtes 'n enkele filter gebruik my hele akkumulator ruimte van 32 bit uitvoering maak user70614 28 April toe 15 8: 20 Die wetenskaplike en ingenieurs Guide to Digital Signal Processing Deur Steven W. Smith, Ph. D. Hoofstuk 15: Moving Gemiddelde filters Familielede van die bewegende gemiddelde filter in 'n perfekte wêreld, sal filter ontwerpers net te doen het met die tyd domein of frekwensiegebied geënkodeerde inligting, maar nooit 'n mengsel van die twee in dieselfde sein. Ongelukkig is daar is 'n paar programme waar beide domeine is gelyktydig belangrik. Byvoorbeeld, televisie seine val in hierdie nare kategorie. Video inligting word geïnkripteer in die tydgebied, dit wil sê die vorm van die golfvorm ooreenstem met die patrone van helderheid in die beeld. Maar tydens die oordrag van die video sein behandel volgens die frekwensie samestelling, soos sy totale bandwydte, hoe die draer golwe vir klank amp kleur bygevoeg, uitskakeling amp herstel van die DC-komponent, ens As 'n voorbeeld, elektromagnetiese interferensie word die beste verstaan ​​word in die frekwensiegebied, selfs al is die seine inligting ingebou in die tydgebied. Byvoorbeeld, kan die temperatuur monitor in 'n wetenskaplike eksperiment word besmet is met 60 hertz van die kraglyne, 30 kHz uit 'n skakel kragbron, of 1320 kHz uit 'n plaaslike AM radiostasie. Familielede van die bewegende gemiddelde filter het 'n beter frekwensiedomein prestasie, en kan nuttig wees in hierdie gemengde domein aansoeke wees. Meervoudige pas bewegende gemiddelde filters behels verby die insetsein deur 'n bewegende gemiddelde filter twee of meer keer. Figuur 15-3a toon die algehele filter kern as gevolg van een, twee en vier passe. Twee passe is gelykstaande aan die gebruik van 'n driehoekige filter kern (n vierkantige filter kern gekonvuleerde met homself). Na vier of meer verby, die ekwivalent filter kern lyk soos 'n Gaussiese (onthou die sentrale limietstelling). Soos getoon in (b), verskeie passe produseer 'n s gevorm stap reaksie, in vergelyking met die reguit lyn van die enkele slaag. Die frekwensie response in (c) en (d) word gegee deur vergelyking. 15-2 met homself vermenigvuldig vir elke slaag. Dit wil sê, elke keer domein konvolusie resultate in 'n vermenigvuldiging van die frekwensie spektrum. Figuur 15-4 toon die frekwensieweergawe van twee ander familielede van die bewegende gemiddelde filter. Wanneer 'n suiwer Gaussiese word gebruik as 'n filter kern, die frekwensieweergawe is ook 'n Gaussiese, soos bespreek in Hoofstuk 11. Die Gaussiese is belangrik, want dit is die impulsrespons van baie natuurlike en mensgemaakte stelsels. Byvoorbeeld, sal 'n kort pols van lig wat 'n lang optiese vesel transmissielyn verlaat as 'n Gaussiese pols, te danke aan die verskillende paaie wat deur die fotone binne die vesel. Die Gaussiese filter kern is ook op groot skaal in beeldverwerking, want dit het 'n unieke eienskappe wat vinnig tweedimensionele convolutions (sien Hoofstuk 24) toelaat. Die tweede frekwensieweergawe in Fig. 15-4 ooreenstem met behulp van 'n Blackman venster as 'n filter kern. (Die venster term het geen betekenis hier is dit net deel van die aanvaarde naam van hierdie kurwe). Die presiese vorm van die venster Blackman word in Hoofstuk 16 (Vgl. 16-2, Fig. 16-2) maar dit lyk baie soos 'n Gaussiese. Hoe is hierdie familie van die bewegende gemiddelde filter beter as die bewegende gemiddelde filter self drie maniere: Eerstens, en belangrikste, hierdie filters het 'n beter stopband attenuasie as die bewegende gemiddelde filter. Tweedens, die filter pitte taps tot 'n kleiner amplitude naby die einde. Onthou dat elke punt in die uitsetsein is 'n geweegde som van 'n groep van die monsters van die insette. As die filter kern goewerneur, is monsters in die insetsein wat verder weg is gegee minder gewig as dié naby. Derde, die stap antwoorde is glad krommes, eerder as om die skielike reguit lyn van die bewegende gemiddelde. Hierdie laaste twee is gewoonlik van beperkte voordeel, maar jy aansoeke waar hulle is ware voordele kan vind. Die bewegende gemiddelde filter en sy familie is almal oor dieselfde op die vermindering van ewekansige geluid terwyl die handhawing van 'n skerp stap reaksie. Die dubbelsinnigheid lê in hoe die risetime van die stap reaksie is gemeet. As die risetime gemeet van 0 tot 100 van die stap, die bewegende gemiddelde filter is die beste wat jy kan doen, soos voorheen aangetoon. In vergelyking, meet die risetime 10-90 maak die venster Blackman beter as die bewegende gemiddelde filter. Die punt is, dit is net teoretiese gekibbel oorweeg hierdie filters gelyke in hierdie parameter. Die grootste verskil in hierdie filters is uitvoering spoed. Met behulp van 'n rekursiewe algoritme (volgende beskryf), sal die bewegende gemiddelde filter loop soos 'n weerligstraal in jou rekenaar. Trouens, dit is die vinnigste digitale filter beskikbaar. Veelvuldige passe van die bewegende gemiddelde sal dienooreenkomstig stadiger, maar nog steeds baie vinnig wees. In vergelyking, die Gaussiese en Blackman filters is tergend stadig, want hulle konvolusie moet gebruik. Dink 'n faktor van tien keer die aantal punte in die filter kern (wat gebaseer is op vermenigvuldiging word sowat 10 keer stadiger as toevoeging). Byvoorbeeld, verwag 'n 100 punt Gauss 1000 keer stadiger as 'n bewegende gemiddelde gebruik van recursion. Documentation dfilt. latticemamin Die belangrikste is die etiket posisie in die diagram, wat identifiseer waar die formaat van toepassing wees. As 'n voorbeeld, kyk na die etiket ProductFormat, wat altyd volg op 'n koëffisiënt vermenigvuldiging element in die sein vloei. Die etiket dui aan dat koëffisiënte laat die vermenigvuldiging element met die lengte woordlengte en breuk wat verband hou met die produk bedrywighede wat koëffisiënte sluit. Van die hersiening van die tafel, sien jy dat die ProductFormat verwys na die eienskappe ProductFracLength. ProductWordLength. en ProductMode wat ten volle die koëffisiënt formaat na vermeerder definieer (of produk) operasies. Eiendomme in hierdie tabel wat jy sien die eienskappe wat verband hou met die minimum fase, bewegende gemiddelde rooster implementering van dfilt voorwerpe. Let Die tabel lys van al die eienskappe wat 'n filter kan hê. Baie van die eienskappe is dinamiese, wat beteken dat hulle bestaan ​​net in reaksie op die stellings van ander eiendomme. Jy kan al die tyd nie sien al die genoteerde eiendomme. Aan al die eienskappe vir 'n filter te eniger tyd te sien, te gebruik waar HD is 'n filter. Vir verdere inligting oor die eienskappe van hierdie filter of enige dfilt voorwerp, verwys na vaste punt Filter Properties. Stel die modus gebruik word om te reageer op omstandighede in vaste punt rekenkundige oorloop. Kies uit óf versadig (die uitset na die grootste positief of negatief representeerbaar waarde beperk) of draai (stel golwende waardes tot die naaste representeerbaar waarde met behulp van modulêre rekenkunde). Die keuse wat jy maak slegs affekteer die akkumulator en uitset rekenkundige. Koëffisiënt en insette rekenkundige versadig altyd. Ten slotte, produkte nooit oorloop 8212 hulle volle akkuraatheid te handhaaf. Vir die produksie van 'n produk operasie, dit stel die fraksie lengte gebruik om die data te interpreteer. Hierdie eiendom word skryfbare (jy kan die waarde te verander) wanneer jy ProductMode stel om SpecifyPrecision. Bepaal hoe die filter hanteer die uitvoer van die produk bedrywighede. Kies uit volle presisie (FullPrecision), of om die belangrikste bietjie (KeepMSB) of minstens beduidende bietjie (KeepLSB) in die resultaat te hou wanneer jy dit nodig om die data woorde verkort. Vir jou om in staat wees om die akkuraatheid (die breuk lengte) wat gebruik word deur die uitvoer van die vermeerder stel, jy ProductMode stel om SpecifyPrecision. Spesifiseer die woordlengte om te gebruik vir vermenigvuldiging operasie resultate. Hierdie eiendom word skryfbare (jy kan die waarde te verander) wanneer jy ProductMode stel om SpecifyPrecision. Gee aan of die filter state en geheue te herstel voor elke filter werking. Kan jy besluit of jou filter behou state van die vorige filter lopies. Vals is die verstek. Stel die modus van die filter gebruik om numeriese waardes quantiseren wanneer die waardes tussen representeerbaar waardes vir die data-formaat (woord en breuk lengtes) lê. oordek - Ronde na positiewe oneindig. konvergente - Ronde na die naaste representeerbaar heelgetal. Bande te rond tot die naaste selfs gestoor heelgetal. Dit is die minste bevooroordeeld van die beskikbare in hierdie sagteware metodes. los - Ronde na nul. vloer - Ronde teenoor negatiewe oneindigheid. naaste - Ronde na naaste. Bande te rond na positiewe oneindig. ronde - Ronde na naaste. Bande te rond na negatiewe oneindigheid vir negatiewe getalle, en die rigting van positiewe oneindigheid vir positiewe getalle. Die keuse wat jy maak slegs affekteer die akkumulator en uitset rekenkundige. Koëffisiënt en insette rekenkundige altyd ronde. Ten slotte, produkte nooit oorloop 8212 hulle volle akkuraatheid te handhaaf. Gee aan of die filter gebruik onderteken of unsigned vaste punt koëffisiënte. Slegs koëffisiënte weerspieël hierdie eiendom omgewing. Kies jou CountryIm nie certainn van die korrekte oplossing al sedert die WHALM gemiddeld van elke monster sou 'n billike bedrag van afronding fout te stel. Hmm. Ek wonder of verskil tussen Dobby die breukdeel van die hele gedeelte sal help. Verdeel die hele deel van elke getal met die telling. Hou drie hardloop somme: 1) Die gemiddelde van die hele dele, 2) Die res van elke afdeling, en 3) Die breukdeel van elke nommer. Elke keer as die hele deel van 'n aantal verdeeld is, word die hele deel gevolg by die gemiddelde hardloop som en die res word bygevoeg om die res loop som. Wanneer die res loop som verkry 'n waarde groter as of gelyk aan die telling, sy gedeel deur die telling met die hele deel gevolg by die gemiddelde hardloop som en die res by die res loop som. Ook by elke berekening, die breukdeel word by die fraksionele hardloop som. Wanneer die gemiddelde klaar is, is die res loop som gedeel deur die telling en die gevolg is bygevoeg om die gemiddelde hardloop bedrag as 'n drywende nommer. Byvoorbeeld: Nou wat om te doen met die fraksionele hardloop som. Die gevaar van oorloop is baie minder geneig hier, al is steeds moontlik, so 'n manier om dit te hanteer sou wees om die fraksionele hardloop som deur die telling te verdeel aan die einde en voeg dit by ons gevolg: 'n alternatief sou wees om die fraksionele loop kyk som op elke berekening om te sien of dit is groter as of gelyk aan tel. Wanneer dit gebeur, net doen dieselfde ding wat ons doen met die res loop som. Uitstekende Jomit Vaghela 6-Maart-07 20:00 ek hou van wat jy gesê het klein werk vinnig draai in 'n groot werk. Dink van optimalisering terwyl kodering is 'n goeie praktyk. Groot moeite en verduideliking, Soos ander genoem het, moet jy 'n IIR (oneindige impulsrespons) filter eerder as die FIR (eindige impulsrespons) filter jy is nou met behulp oorweeg. Daar is meer as dit, maar met die eerste oogopslag FIR filters word toegepas as eksplisiete konvolusie en IIR filters met vergelykings. Die besondere IIR filter Ek gebruik 'n baie in mikrobeheerders is 'n enkele paal laaglaatfilter. Dit is die digitale ekwivalent van 'n eenvoudige R-C analoog filter. Vir die meeste aansoeke, sal hierdie beter eienskappe as die boks filter wat jy gebruik het. Die meeste gebruike van 'n boks filter wat ek teëgekom het is 'n gevolg van iemand nie aandag in digitale seinverwerking klas, nie as gevolg van die behoefte van hul besondere eienskappe. As jy net wil 'n hoë frekwensies dat jy weet is geraas te verminder, 'n enkele paal laaglaatfilter is beter. Die beste manier om 'n digitaal te implementeer in 'n mikrobeheerder is gewoonlik: filt lt-- filt VF (NEW - filt) filt is 'n stukkie van die aanhoudende staat. Dit is die enigste aanhoudende veranderlike wat jy nodig het om hierdie filter te bereken. NUWE is die nuwe waarde wat die filter word opgedateer met hierdie iterasie. VF is die filter fraksie. wat pas 'n bekommernis vir die filter. Kyk na hierdie algoritme en sien dat vir 0 VF die filter is oneindig swaar sedert die uitset verander nooit. Vir 1 VF, sy werklik geen filter glad sedert die uitset volg net die insette. Nuttige waardes van die twee. Op klein stelsels haal jy VF om 1/2 N wees sodat die vermenigvuldig met VF bereik kan word as 'n reg verskuiwing deur N stukkies. Byvoorbeeld, kan VF wees 16/1 en die vermenigvuldig met VF dus 'n reg verskuiwing van 4 stukkies. Andersins hierdie filter moet net een aftrek en een byvoeging, hoewel die getalle gewoonlik nodig om wyer as die invoerwaarde (meer op numeriese presisie in 'n aparte afdeling hieronder) wees. Ek neem gewoonlik A / D lesings aansienlik vinniger as dit nodig is en pas twee van hierdie filters kaskade. Dit is die digitale ekwivalent van twee R-C filters in reeks, en verswak met 12 dB / oktaaf ​​bokant die rolloff frekwensie. Maar vir A / D lesings sy gewoonlik meer relevant om te kyk na die filter in die tydgebied deur die oorweging van sy stap reaksie. Dit vertel jou hoe vinnig jou stelsel 'n verandering sal sien wanneer die ding is wat jy meet veranderinge. Om die ontwerp van hierdie filters (wat net beteken pluk VF en besluit hoeveel van hulle waterval) te fasiliteer, ek gebruik my program FILTBITS. Jy gee die aantal verskuiwing stukkies vir elke VF in die kaskade reeks filters, en dit bere die stap reaksie en ander waardes. Eintlik het ek gewoonlik loop dit via my wrapper script PLOTFILT. Dit loop FILTBITS, wat 'n CSV-lêer maak, dan plotte die CSV. Byvoorbeeld, hier is die resultaat van PLOTFILT 4 4: Die twee parameters om PLOTFILT beteken daar twee filters kaskade van die hierbo beskryf tipe. Die waardes van 4 dui die aantal verskuiwing stukkies om die vermenigvuldig met VF besef. Die twee VF waardes is dus 1/16 in hierdie geval. Die rooi spoor is die eenheid stap reaksie, en is die belangrikste ding om te kyk na. Byvoorbeeld, hierdie vir jou vertel dat as die insette onmiddellik verander, die opbrengs van die gekombineerde filter sal vestig tot 90 van die nuwe waarde in 60 iterasies. As jy omgee vir 95 wegsterftyd dan moet jy wag sowat 73 iterasies, en vir 50 wegsterftyd slegs 26 iterasies. Die groen spoor wys jou die uitset van 'n enkele volle amplitude piek. Dit gee jou 'n idee van die ewekansige geraas onderdrukking. Dit lyk soos geen enkele voorbeeld meer as 'n 2.5 verandering in die uitset sal veroorsaak. Die blou spoor is 'n subjektiewe gevoel van wat hierdie filter doen met 'n wit geraas te gee. Dit is nie 'n streng toets, want daar is geen waarborg wat presies die inhoud was van die ewekansige getalle opgetel as die wit geraas insette vir hierdie lopie van PLOTFILT. Sy net om jou 'n rowwe gevoel van hoeveel dit sal platgedruk en hoe glad dit is. PLOTFILT, miskien FILTBITS, en baie van die ander nuttige dinge, veral vir PIC firmware ontwikkeling is beskikbaar in die PIC Ontwikkeling tools sagteware vrylating op my bladsy sagteware afgelaai. Bygevoeg oor numeriese presisie Ek sien uit die kommentaar en nou 'n nuwe antwoord dat daar belangstelling in die bespreking van die aantal bisse wat nodig is om hierdie filter te implementeer. Let daarop dat die vermenigvuldig met VF log 2 (VF) sal skep nuwe stukkies onder die binêre punt. Op klein stelsels, is VF gewoonlik gekies om 1/2 N wees sodat dit vermeerder eintlik besef deur 'n regte verskuiwing van N stukkies. Filt is dus gewoonlik 'n vaste punt heelgetal. Let daarop dat hierdie een van die wiskunde nie die geval te verander van die verwerkers oogpunt. Byvoorbeeld, as jy die filter 10 bis A / D lesings en N 4 (1/16 VF), dan moet jy 4 fraksie stukkies onder die 10 bis integriteit A / D lesings. Een meeste verwerkers, youd doen 16 bis integriteit bedrywighede weens die 10 bis A / D lesings. In hierdie geval is, kan jy nog doen presies dieselfde 16 bis integriteit opertions, maar begin met die A / D lesings links verskuif deur 4 stukkies. Die verwerker nie die geval is die verskil en nie die geval is weet moet. Doen die wiskunde op hele 16 bit heelgetalle werk of jy dit as '12.4 vaste punt of ware 16 bit heelgetalle (16.0 vaste punt) wees. In die algemeen, moet jy N stukkies elke filter paal voeg as jy dit nie wil geraas voeg as gevolg van die numeriese verteenwoordiging. In die voorbeeld hierbo, sal die tweede filter van twee moet 1044 18 stukkies inligting nie verloor het. In die praktyk op 'n 8 bit masjien wat youd gebruik 24 bit waardes beteken. Tegnies slegs die tweede paal van twee sou die wyer waarde nodig nie, maar vir firmware eenvoud Ek gebruik gewoonlik dieselfde verteenwoordiging, en sodoende dieselfde kode, vir alle pole van 'n filter. Gewoonlik skryf ek 'n subroutine of makro een filter paal aksie uit te voer, dan aansoek doen dat elke paal. Of 'n subroutine of makro hang af of siklusse of program geheue is belangriker in daardie spesifieke projek. In ieder geval, ek gebruik 'n paar kras staat om nuwe pas in die subroutine / makro wat filt updates, maar ook belastings wat in dieselfde kras staat NUWE in. Dit maak dit maklik om verskeie pale toe te pas, aangesien die opgedateer filt van een pool is die NUWE van die volgende een. Wanneer 'n subroutine, sy nuttig om 'n wyser punt om filt op die manier, wat net ná filt op die pad uit is opgedateer. Op dié manier die subroutine bedryf outomaties op agtereenvolgende filters in die geheue as meer as een keer genoem. Met 'n makro hoef jy nodig het 'n wyser omdat jy slaag in die adres te werk op elke iterasie. Kode Voorbeelde Hier is 'n voorbeeld van 'n makro soos hierbo beskryf vir 'n PIC 18: En hier is 'n soortgelyke makro vir 'n PIC 24 of dsPIC 30 of 33: Beide hierdie voorbeelde is geïmplementeer as makros met behulp van my PIC assembler voorverwerker. wat is meer in staat is as een van die ingeboude makro fasiliteite. clabacchio: Nog 'n probleem wat ek moes genoem is implementering firmware. Jy kan 'n enkele paal laaglaatfilter subroutine keer skryf, dan pas dit meer as een keer. Om die waarheid te gewoonlik skryf ek so 'n subroutine om 'n wyser te neem in die geheue om die filter staat, dan is dit bevorder die wyser sodat dit kan genoem word in die reeks maklik om 'n multi-paal filters te realiseer. â € Olin Lathrop 20 April 12 by 15:03 1. Baie dankie vir jou antwoorde - almal van hulle. Ek het besluit om hierdie IIR Filter gebruik, maar dit Filter is nie gebruik word as 'n Standard laagdeurlaatfilter, want ek moet Counter Waardes gemiddeld en vergelyk kan word om veranderinge in 'n sekere omvang te spoor. aangesien hierdie waardes van baie verskillende dimensies afhangende van Hardware wees Ek wou 'n gemiddelde te neem ten einde in staat te wees om outomaties te reageer op hierdie Hardware spesifieke veranderinge. â € sensslen 21 12 Mei om 12:06 As jy kan lewe met die beperking van 'n bevoegdheid van twee aantal items te Gemiddeld (dws 2,4,8,16,32 ens) dan is die kloof kan maklik en doeltreffend gedoen word op 'n lae prestasie mikro sonder toegewyde verdeel, want dit kan gedoen word as 'n bietjie skuif. Elke skof reg is 'n krag van twee bv: Die OP het gedink hy het twee probleme, verdeel in 'n PIC16 en geheue vir sy ring buffer. Hierdie antwoord dui daarop dat die skeidslyn is nie moeilik. Toegegee dit spreek nie die geheue probleem, maar die SE stelsel kan gedeeltelike antwoorde, en gebruikers kan iets uit elke antwoord neem vir hulself, of selfs wysig en kombineer other39s antwoorde. Aangesien sommige van die ander antwoorde vereis dat 'n kloof werking, hulle is soortgelyk onvolledig omdat hulle nie wys hoe om doeltreffend hierdie op 'n PIC16 bereik. â € Martin 20 April 12 by 13:01 Daar is 'n antwoord vir 'n ware bewegende gemiddelde filter (aka wagon filter) met minder geheue vereistes, as jy verstand downsampling hoef. Die sogenaamde kaskade integreerder-kam filter (CIC). Die idee is dat jy 'n integreerder wat jy verskille oor 'n tydperk, en die sleutel-geheue te bespaar, is dat deur downsampling, dont jy elke waarde van die integreerder stoor. Dit kan toegepas word met behulp van die volgende pseudokode: Jou effektiewe bewegende gemiddelde lengte is decimationFactorstatesize maar jy moet net om statesize monsters te hou. Dit is duidelik dat jy kan 'n beter prestasie kry as jou statesize en decimationFactor magte van 2 is, sodat die afdeling en restant operateurs kry vervang deur skofte en masker-ands. Naskrif: Ek stem saam met Olin dat jy altyd in ag moet neem eenvoudig IIR filters voor 'n bewegende gemiddelde filter. As jy dit nie nodig het die frekwensie-nulls van 'n wagon filter, sal 'n 1-paal of 2-paal laaglaatfilter waarskynlik werk boete. Aan die ander kant, as jy die filter vir die doeleindes van uitkap (neem 'n hoë-monster-koers insette en gemiddeld dit vir gebruik deur 'n lae-koers proses) dan 'n CIC filter kan wees net wat jy soek. (Veral as jy statesize1 kan gebruik en heeltemal te vermy die ringbuffer met net 'n enkele vorige integreerder waarde) Daar is 'n paar in-diepte analise van die wiskunde agter die gebruik van die eerste orde IIR filter wat Olin Lathrop reeds oor beskryf op die Digitale Seinverwerking stapel ruil (sluit baie mooi foto's.) die vergelyking vir hierdie IIR filter is: dit kan toegepas word met behulp van slegs heelgetalle en geen verdeeldheid onder die volgende kode (dalk 'n debugging nodig as ek tik uit die geheue.) hierdie filter by benadering 'n bewegende gemiddelde van die laaste K monsters deur die oprigting van die waarde van alfa tot 1 / K. Doen dit in die voorafgaande kode deur te definieer ing BITS om log2 (K), dit wil sê vir K 16 stel BITS tot 4, vir K 4 stel BITS tot 2, ens (Ill verifieer die kode hier gelys word sodra ek 'n verandering te kry en hierdie antwoord wysig indien nodig.) antwoord 23 Junie 12 aan 04:04 Hier is 'n enkel-paal laaglaatfilter (bewegende gemiddelde, met afsnyfrekwensie CutoffFrequency). Baie eenvoudig, baie vinnig, werk baie goed, en byna geen geheue oorhoofse. Let wel: Alle veranderlikes omvang buite die filter funksie, behalwe die geslaag in newInput Nota: Hierdie is 'n enkele stadium filter. Veelvuldige fases kan saam kaskade die skerpte van die filter te verhoog. As jy meer as een stadium gebruik, sal jy moet DecayFactor pas (soos verwys na die afsny-Frequency) te vergoed. En natuurlik al wat jy nodig het, is die twee lyne oral geplaas, hulle dont hul eie funksie het. Hierdie filter het wel 'n oprit-up tyd voor die bewegende gemiddelde verteenwoordig dié van die insetsein. As jy nodig het om dit oprit-up tyd omseil, kan jy net inisialiseer MovingAverage om die eerste waarde van newInput in plaas van 0, en hoop dat die eerste newInput isnt 'n uitskieter. (CutoffFrequency / SampleRate) het 'n reeks van tussen 0 en 0,5. DecayFactor is nie 'n waarde tussen 0 en 1, gewoonlik naby aan 1. Enkellopend-presisie dryf is goed genoeg vir die meeste dinge, ek verkies net dubbelspel. As jy nodig het om te hou met heelgetalle, kan jy sit DecayFactor en Amplitude Factor in fraksionele heelgetalle, waarin die teller gestoor as die heelgetal, en die deler is 'n heelgetal krag van 2 (sodat jy kan bietjie-verskuiwing na regs as die deler eerder as om te verdeel in die filter lus). Byvoorbeeld, as DecayFactor 0.99, en jy wil om heelgetalle gebruik, jy kan stel DecayFactor 0.99 65536 64881. En dan wanneer jy vermenigvuldig met DecayFactor in jou filter lus, net skuif die gevolg 16. Vir meer inligting oor hierdie, 'n uitstekende boek dis aanlyn, hoofstuk 19 op rekursiewe filters: www. dspguide / ch19.htm PS Vir die bewegende gemiddelde paradigma, 'n ander benadering tot die opstel van DecayFactor en AmplitudeFactor wat meer relevant is vir jou behoeftes kan wees, kan sê wat jy wil die vorige, sowat 6 items saam gemiddeld, doen dit strategies, youd 6 items en deel te voeg met 6, sodat jy kan die AmplitudeFactor stel om 1/6, en DecayFactor om (1.0 - AmplitudeFactor). antwoord 14 Mei 12 aan 22:55 Almal het deeglik kommentaar op die nut van IIR teen FIR, en op krag-van-twee-afdeling. ID net graag 'n paar implementering besonderhede gee. Die onderstaande werk goed op klein mikrobeheerders met geen FPU. Theres geen vermenigvuldiging, en as jy N hou 'n krag van twee, al die afdeling is enkel-siklus bietjie-verskuiwing. Basiese FIR ring buffer: hou 'n lopende buffer van die laaste N waardes, en 'n lopende som van al die waardes in die buffer. Elke keer as 'n nuwe monster kom in, trek die oudste waarde in die buffer van som, vervang dit met die nuwe monster, voeg die nuwe monster te som, en uitset som / N. Gewysig IIR ring buffer: hou 'n lopende totaal van die laaste N waardes. Elke keer as 'n nuwe monster kom in, som - som / N, voeg in die nuwe monster, en uitset som / N. antwoord 28 Augustus 13 aan 13:45 As I39m jy lees reg, you39re beskrywing van 'n eerste-orde IIR filtreer die waarde you39re trek isn39t die oudste waarde wat uitval, maar is in plaas van die gemiddelde van die vorige waardes. Eerste-orde IIR filters kan beslis nuttig wees, maar I39m nie seker wat jy bedoel wanneer jy suggereer dat die uitset is dieselfde vir alle periodiese seine. Op 'n 10kHz sample rate, voer 'n 100Hz vierkante golf in 'n 20-stadium boks filter sal 'n teken dat eenvormig styg vir 20 monsters oplewer, sit hoog vir 30, daal eenvormig vir 20 monsters, en sit laag vir 30. 'n eerste-orde IIR filter. â € supercat 28 Augustus 13 aan 15:31 sal 'n golf wat skerp begin oplewer stygende en geleidelik afplat naby (maar nie by) die maksimum insette, dan skerp begin val en geleidelik afplat naby (maar nie by) die insette minimum. Baie verskillende gedrag. â € supercat 28 Augustus 13 by 15:32 Een probleem is dat 'n eenvoudige bewegende gemiddelde mag of nie mag nuttig wees. Met 'n IIR filter, kan jy 'n lekker filter met relatief min calcs kry. Die FIR jy beskryf kan net gee jou 'n reghoek in die tyd - 'n sed in freq - en jy can39t die kant lobbe te bestuur. Dit kan die moeite werd om te gooi in 'n paar heelgetal vermeerder sodat dit 'n mooi simmetriese verstelbare FIR as jy kan spaar die klok bosluise wees. uitvoering maak Scott Seidman 29 Augustus 13 by 13:50 ScottSeidman: Nie nodig vir vermeerder as 'n mens het net elke stadium van die FIR óf uitset die gemiddelde van die insette op daardie stadium en sy vorige gestoor waarde, en dan slaan die insette (indien 'n mens die numeriese reeks, kan 'n mens die som eerder as die gemiddelde gebruik). Of that39s beter as 'n boks filter hang af van die aansoek (die stap reaksie van 'n boks filter met 'n totale vertraging van 1ms, byvoorbeeld, sal 'n nare d2 het / dt piek wanneer die insette verander, en weer 1ms later, maar sal moet die minimum moontlike d / dt vir 'n filter met 'n totale 1ms vertraging). â € supercat 29 Augustus 13 aan 15:25 Soos mikeselectricstuff gesê, as jy regtig nodig het om jou geheue behoeftes te verminder, en jy dit nie omgee jou impulsrespons om 'n eksponensiële (in plaas van 'n vierkantige pols), sou ek gaan vir 'n eksponensiële bewegende gemiddelde filter . Ek gebruik dit op groot skaal. Met hierdie tipe filter, hoef jy geen buffer nodig het. Jy hoef nie te N afgelope monsters te stoor. Slegs een. So, kry jou geheue vereistes kap met 'n faktor van N. Ook, moenie jy nodig het 'n afdeling vir daardie. Slegs vermenigvuldiging. As jy toegang tot swaai-punt rekenkundige het, gebruik swaai-punt vermenigvuldiging. Anders, doen heelgetal vermenigvuldiging en skuif na regs. Ons is egter in 2012, en ek sal u aanbeveel om opstellers (en MCUs) wat u toelaat om te werk met swaai-punt getalle gebruik. Behalwe dat meer geheue doeltreffend en vinniger (jy hoef nie te items in enige omsendbrief buffer werk), sou ek sê dit is ook meer natuurlike. omdat 'n eksponensiële impulsrespons wedstryde beter soos die natuur optree, in die meeste gevalle. antwoord 20 April 12 aan 09:59 Een probleem met die IIR filter as byna aangeraak deur Olin en supercat maar blykbaar geïgnoreer deur ander is dat die afronding af stel sommige onakkuraatheid (en potensieel vooroordeel / afkorting). veronderstelling dat N is 'n krag van twee, en net heelgetal rekenkunde gebruik word, die verskuiwing reg nie stelselmatig uit te skakel die LSBs van die nuwe monster. Dit beteken dat hoe lank die reeks ooit kon wees, die gemiddelde sal nooit neem diegene in ag neem. Byvoorbeeld, veronderstel 'n stadig afneem reeks (8,8,8. 8,7,7,7. 7,6,6,) en neem die gemiddelde is inderdaad 8 aan die begin. Die vuis 7 monster sal die gemiddelde bring tot 7, ongeag die filter sterkte. Net vir 'n monster. Dieselfde storie vir 6, ens Nou dink aan die teenoorgestelde. die reeks styg. Die gemiddelde sal bly op 7 ewig, totdat die monster is groot genoeg om dit te verander. Natuurlik, kan jy reg vir die vooroordeel deur die byvoeging van 1 / 2N / 2, maar dit sal nie regtig los die akkuraatheid probleem. In daardie geval die dalende reeks sal vir ewig bly, 8 tot en met die monster is 8-1 / 2 (N / 2). Vir N4 byvoorbeeld 'n monster bo nul sal die gemiddelde onveranderd te hou. Ek glo dat 'n oplossing vir dit sou impliseer 'n akkumulator van die verlore LSBs hou. Maar ek didnt maak dit ver genoeg om kode gereed te hê, en ek is nie seker of dit sal nie skade aan die IIR krag in sommige ander gevalle van 'n reeks (byvoorbeeld of 7,9,7,9 sal gemiddeld tot 8 dan). Olin, jou twee-stadium waterval ook sou 'n verduideliking nodig. Bedoel jy hou twee gemiddelde waardes met die uitslag van die eerste gevoer in die tweede plek in elke iterasie. Wat is die voordeel van hierdie


No comments:

Post a Comment